如图(1),矩形ABCD的一边BC在直角坐标系中x轴上,折叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(m,0),其中m>0.求点E、F的坐标(用含m的式子表示);连接OA,若△OAF是等腰三角形,求m的值;如图(2),设抛物线y=a(x-m-6)2+h经过A、E两点,其顶点为M,连接AM,若∠OAM=90°,求a、h、m的值. (1) (2)
已知关于的一元二次方程的两个实数根为,. (1)求k的取值范围。 (2)是否存在实数可k,使得成立?若存在,请求出k值,若不存在,请说明理由.
为解方程x4-5x2+4=0,我们可以将x2视为一个整体,然后设x2=y,则 x4=y2, 原方程化为y2-5y+4=0.① 解得y1=1,y2=4 当y=1时,x2=1.∴x=±1 当y=4时,x2=4,∴x=±2。 ∴原方程的解为x1=1,x2=-1,x3=2,x4=-2 解答问题: (1)填空:在由原方程得到方程①的过程中,利用法达到了降次的目的,体现了的数学思想. (2)解方程:(x2-2x)2+x2-2x-6=0.
如图,在平面直角坐标系中,将四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B(1,3),C(3,3),D(3,1). ①画出“基本图形”关于原点O对称的四边形A1B1C1D1,并填出A1,B1,C1,D1的坐标. A1(,) B1(,) C1(,) D1(,) ②画出“基本图形”绕B点顺时针旋转900所成的四边形A2B2C2D2。
用适当的方法解下列方程: (1) (2)
如图,△ABC中,∠C=90°,AC=8cm,BC=4cm,一动点P从C出发沿着CB方向以1cm/S的速度运动,另一动点Q从A出发沿着AC方向以2cm/S的速度运动,P,Q两点同时出发,运动时间为t(s). (1)当t为几秒时,△PCQ的面积是△ABC面积的 ? (2)△PCQ的面积能否为△ABC面积的一半?若能,求出t的值;若不能,说明理由.