小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两人先下棋,规则:三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到水平地面为一个回合,落地后,三枚硬币中,恰有两枚正面向上或者反面向上的两人先下棋;若三枚硬币均正面向上或反面向上则不能确定哪两人先下棋请你完成下面表示游戏一个回合所有可能出现的结果的树状图(你也可自己另外画树状图或列表格)求一个回合能确定两人先下棋的概率
已知是的一个内角,抛物线的顶点在轴上.(1)求的度数;(2) 若求:AB边的长.
如图(1),由直角三角形边角关系,可将三角形面积公式变形, 即:=AB·CD, 在Rt中,,=bc·sin∠A.① 即三角形的面积等于两边之长与夹角正弦之积的一半. 如图(2),在ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β. ∵,由公式①,得AC·BC·sin(α+β)= AC·CD·sinα+BC·CD·sinβ, 即 AC·BC·sin(α+β)= AC·CD·sinα+BC·CD·sinβ.② 请你利用直角三角形边角关系,消去②中的AC、BC、CD,只用的正弦或余弦函数表示(直接写出结果).(1)______________________________________________________________(2)利用这个结果计算:=_________________________
如图,在平面直角坐标系中,点O为坐标原点,以点A(0,-3)为圆心,5为半径作圆A,交x轴于B、C两点,交y轴于点D、E两点.(1)如果一个二次函数图象经过B、C、D三点,求这个二次函数的解析式;(2)设点P的坐标为(m,0)(m>5),过点P作x轴交(1)中的抛物线于点Q,当以为顶点的三角形与相似时,求点P的坐标.
已知在四边形ABCD中,(1)求的长;
已知抛物线y=ax+bx+c与轴交于两点,若两点的横坐标分别是一元二次方程的两个实数根,与轴交于点(0,3),(1)求抛物线的解析式;(2)在此抛物线上求点,使.