如图,A、E、B、D在同一直线上,在△ABC和△DEF中,AB=DE,AC=DF,AC∥DF. (1)求证:△ABC≌△DEF;(2)你还可以得到的结论是__________(写出一个即可,不再添加其他线段,不再标注或使用其它字母)
计算:(1)。(2)解方程:。
已知二次函数y=a-4x+c的图像经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离
如图,⊙是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF。(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙的切线。
如图,已知A(-4,),B(-1,2)是一次函数y=kx+b与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D。(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标。
某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图。 (1)这次被调查的同学共有 名;(2)把条形统计图(题22-1图)补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐。据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?