如图,A、E、B、D在同一直线上,在△ABC和△DEF中,AB=DE,AC=DF,AC∥DF. (1)求证:△ABC≌△DEF;(2)你还可以得到的结论是__________(写出一个即可,不再添加其他线段,不再标注或使用其它字母)
如图,已知 ΔABC 的顶点坐标分别为 A ( 3 , 0 ) , B ( 0 , 4 ) , C ( − 3 , 0 ) .动点 M , N 同时从 A 点出发, M 沿 A → C , N 沿折线 A → B → C ,均以每秒1个单位长度的速度移动,当一个动点到达终点 C 时,另一个动点也随之停止移动,移动的时间记为 t 秒.连接 MN .
(1)求直线 BC 的解析式;
(2)移动过程中,将 ΔAMN 沿直线 MN 翻折,点 A 恰好落在 BC 边上点 D 处,求此时 t 值及点 D 的坐标;
(3)当点 M , N 移动时,记 ΔABC 在直线 MN 右侧部分的面积为 S ,求 S 关于时间 t 的函数关系式.
如图, AB 是 ⊙ O 的直径,点 D 在 ⊙ O 上(点 D 不与 A , B 重合),直线 AD 交过点 B 的切线于点 C ,过点 D 作 ⊙ O 的切线 DE 交 BC 于点 E .
(1)求证: BE = CE ;
(2)若 DE / / AB ,求 sin ∠ ACO 的值.
如图,一次函数 y = − 1 2 x + 5 2 的图象与反比例函数 y = k x ( k > 0 ) 的图象交于 A , B 两点,过 A 点作 x 轴的垂线,垂足为 M , ΔAOM 面积为1.
(1)求反比例函数的解析式;
(2)在 y 轴上求一点 P ,使 PA + PB 的值最小,并求出其最小值和 P 点坐标.
有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.
(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?
(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?
绵阳某公司销售部统计了每个销售员在某月的销售额, 绘制了如下折线统计图和扇形统计图:
设销售员的月销售额为 x (单 位: 万元) . 销售部规定: 当 x < 16 时为“不称职”, 当 16 ⩽ x < 20 时为“基本称职”, 当 20 ⩽ x < 25 时为“称职”, 当 x ⩾ 25 时为“优秀” . 根据以上信息, 解答下列问题:
(1) 补全折线统计图和扇形统计图;
(2) 求所有“称职”和“优秀”的销售员月销售额的中位数和众数;
(3) 为了调动销售员的积极性, 销售部决定制定一个月销售额奖励标准, 凡月销售额达到或超过这个标准的销售员将获得奖励 . 如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖, 月销售额奖励标准应定为多少万元 (结 果取整数) ?并简述其理由 .