已知曲线的极坐标方程是ρ=2,以极点为原点,极轴为轴的正半轴建立平面直角坐标系(1) 写出曲线的直角坐标方程;(2)若把上各点的坐标经过伸缩变换后得到曲线,求曲线上任意一点到两坐标轴距离之积的最大值.
已知函数(∈R).(1)若函数在区间上有极小值点,求实数的取值范围;(2)若当时,,求实数的取值范围.
如图,底面为正三角形,面, 面,,设为的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.
设数列的前项积为,且(n∈N*).(1)求,并证明:;(2)设, 求数列的前项和.
在中,角所对的边为,已知 ,.(1)求的值;(2)若的面积为,求的值.
已知函数,点.(1)若,函数在上既能取到极大值,又能取到极小值,求的取值范围;(2)当时,对任意的恒成立,求的取值范围;(3)若,函数在和处取得极值,且,是坐标原点,证明:直线与直线不可能垂直.