在数列中,,.(1)求出、、的值;(2)求证:数列为等差数列. (3)求数列的通项公式.
(本题共14分)已知函数。(1)求的定义域;(2)判定的奇偶性;(3)是否存在实数,使得的定义域为时,值域为?若存在,求出实数的取值范围;若不存在,请说明理由。
(本题共13分)已知函数在上满足,且当时,。(1)求、的值;(2)判定的单调性;(3)若对任意x恒成立,求实数的取值范围。
(本题共12分)有一小型自来水厂,蓄水池中已有水450吨,水厂每小时可向蓄水池注水80吨,同时蓄水池向居民小区供水,小时内供水总量为吨。现在开始向池中注水并同时向居民小区供水,问:(1)多少小时后蓄水池中的水量最少?(2)如果蓄水池中存水量少于150吨时,就会出现供水紧张,那么有几个小时供水紧张?
(本题共12分)设为定义在上的偶函数,当时,,且的图象经过点,又在的图象中,有一部分是顶点为(0,2),且过的一段抛物线。(1)试求出的表达式;(2)求出值域;
(本题共12分)(1)计算(2)解方程: