定义在上的函数同时满足以下条件:①在上是减函数,在上是增函数;②是偶函数;③在处的切线与直线垂直. (1)求函数的解析式;(2)设,若存在,使,求实数的取值范围.
(本小题满分12分)如图,在斜三棱柱中,侧面与侧面都是菱形,,. (Ⅰ)求证:; (Ⅱ)若,求四棱锥的体积.
【原创】在中,内角的对边分别为.已知=. (1)求的值; (2) 若,的周长为14,求的长.
(本小题满分13分)已知椭圆()的长轴长为,且过点. (1)求椭圆的方程; (2)设、、是椭圆上的三点,若,点为线段的中点,、两点的坐标分别为、,求证:.
(本大题满分13分)对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是 “线性数列”. (1)若,,,数列、是否为“线性数列”?若是,指出它对应的实常数,若不是,请说明理由; (2)证明:若数列是“线性数列”,则数列也是“线性数列”; (3)若数列满足,,为常数.求数列前项的和.
(本小题满分13分)已知为常数,且,函数的最小值和函数的最小值都是函数R的零点. (1)用含的式子表示,并求出的取值范围; (2)求函数在区间上的最大值和最小值.