某超市在节日期间进行有奖促销,凡在该超市购物满400元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就继续摸球.规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.(1)求1名顾客摸球2次停止摸奖的概率;(2)记为1名顾客摸奖获得的奖金数额,求随机变量的分布律和数学期望.
(本小题满分12分)已知椭圆的方程为,离心率,过焦点且与长轴垂直的直线被椭圆所截得线段长为1.(1)求椭圆的方程;(2),,为曲线上的三个动点, 在第一象限, ,关于原点对称,且,问的面积是否存在最小值?若存在,求出此时点的坐标;若不存在,请说明理由.
(本小题满分12分)如图,在三棱柱中,平面,,,.(1)过的截面交于点,若为等边三角形,求出点的位置;(2)在(1)条件下,求四棱锥与三棱柱的体积比.
(本小题满分12分) 为了调查某高中学生每天的睡眠时间,现随机对20名男生和20名女生进行问卷调查,结果如下: 女生:
男生:
(1)现把睡眠时间不足5小时的定义为“严重睡眠不足”,从睡眠时间不足6小时的女生中随机抽取3人,求此3人中恰有一人为“严重睡眠不足”的概率; (2)完成下面2×2列联表,并回答是否有90%的把握认为“睡眠时间与性别有关”?
(,其中)
(本小题满分12分) 已知等差数列的前项和为, ,. (1)求数列的通项公式; (2)设,求数列的前项和为.
(本小题满分10分) 选修4—5:不等式选讲.已知函数.(1)若不等式恒成立,求的取值范围;(2)当时,求不等式的解集.