已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点,过点的直线与椭圆相交于不同的两点.(Ⅰ)求椭圆的方程;(Ⅱ)是否存直线,满足?若存在,求出直线的方程;若不存在,请说明理由.
已知点,、、是平面直角坐标系上的三点,且、、成等差数列,公差为,.(1)若坐标为,,点在直线上时,求点的坐标;(2)已知圆的方程是,过点的直线交圆于两点,是圆上另外一点,求实数的取值范围;(3)若、、都在抛物线上,点的横坐标为,求证:线段的垂直平分线与轴的交点为一定点,并求该定点的坐标.
已知函数.(1)若是偶函数,在定义域上恒成立,求实数的取值范围;(2)当时,令,问是否存在实数,使在上是减函数,在上是增函数?如果存在,求出的值;如果不存在,请说明理由.
如图所示,扇形,圆心角的大小等于,半径为,在半径上有一动点,过点作平行于的直线交弧于点.(1)若是半径的中点,求线段的大小;(2)设,求△面积的最大值及此时的值.
在棱长为的正方体中,分别为的中点.(1)求直线与平面所 成 角的大小;(2)求二面角的大小.
动圆过定点,且与直线相切,其中.设圆心的轨迹的程为(1)求;(2)曲线上的一定点(0) ,方向向量的直线(不过P点)与曲线交与A、B两点,设直线PA、PB斜率分别为,,计算;(3)曲线上的两个定点、,分别过点作倾斜角互补的两条直线分别与曲线交于两点,求证直线的斜率为定值;