已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点,过点的直线与椭圆相交于不同的两点.(Ⅰ)求椭圆的方程;(Ⅱ)是否存直线,满足?若存在,求出直线的方程;若不存在,请说明理由.
若a,b为非零向量且a∥b,1,2∈R,且12≠0. 求证:1a+2b与1a-2b为共线向量.
已知A(-2,4),B(3,-1),C(-3,-4). 设=a,=b,=c,且=3c,=-2b, (1)求:3a+b-3c; (2)求满足a=mb+nc的实数m,n.
如图所示,在平行四边形ABCD中,M,N分别为DC,BC的中点,已知=c,=d,试用c,d表示,.
已知点A(1,0)、B(0,2)、C(-1,-2),求以A、B、C为顶点的平行四边形的第四个顶点D的坐标.
设两个非零向量e1和e2不共线. (1)如果=e1-e2,=3e1+2e2,=-8e1-2e2, 求证:A、C、D三点共线; (2)如果=e1+e2,=2e1-3e2,=2e1-ke2,且A、C、D三点共线,求k的值.