(12分)(2010·山东德州模拟)已知f(x)=(x2+ax+a)e-x(a≤2,x∈R).(1)当a=1时,求f(x)的单调区间;(2)若f(x)的极大值为4e-2,求出a的值.
给定椭圆:,称圆心在原点,半径为的圆是椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距离为. (Ⅰ)求椭圆的方程和其“准圆”方程. (Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线使得与椭圆都只有一个交点,且分别交其“准圆”于点,求证:为定值.
已知椭圆经过点,且其右焦点与抛物线的焦点F重合. (Ⅰ)求椭圆的方程; (II)直线经过点与椭圆相交于A、B两点,与抛物线相交于C、D两点.求的最大值.
如图,在底面为直角梯形的四棱锥中,平面,,,. (Ⅰ)求证:; (Ⅱ)求直线与平面所成的角; (Ⅲ)设点在棱上, ,若∥平面,求的值.
已知为锐角,且,函数,数列{}的首项. (Ⅰ)求函数的表达式; (Ⅱ)求数列的前项和
对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
(Ⅰ)求出表中及图中的值; (Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间内的人数; (Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.