(13分)已知函数f(x)=ax2+2x+c(a、c∈N*)满足:①f(1)=5;②6<f(2)<11.(1)求a、c的值;(2)若对任意的实数x∈,都有f(x)-2mx≤1成立,求实数m的取值范围.
(本小题满分13分)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:(Ⅰ)打满3局比赛还未停止的概率;(Ⅱ)比赛停止时已打局数的分布列与期望E.
.(本小题满分13分)已知函数(),且函数的最小正周期为.⑴求函数的解析式;⑵在△中,角所对的边分别为.若,,且,试求的值.
(23)(本小题满分10分)选修4-4:坐标系与参数方程已知直线C1(t为参数),C2(为参数),(Ⅰ)当=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O作 C1的垂线,垂足为A,P为OA中点,当变化时,求P点的轨迹的参数方程,并指出它是什么曲线.
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分。做答时用2B铅笔在答题卡上把所选题目的题号涂黑。(22)(本小题满分10分)选修4-1:几何证明选讲如图,已经⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为弧BD中点,连结AG分别交⊙O、BD于点E、F,连结CE.(Ⅰ) 求证:AG·EF=CE·GD; (Ⅱ) 求证:
(本小题满分12分)设不等边三角形ABC的外心与重心分别为M、G,若A(-1,0),B(1,0)且MG//AB.(Ⅰ) 求三角形ABC顶点C的轨迹方程;(Ⅱ) 设顶点C的轨迹为D,已知直线过点(0,1)并且与曲线D交于P、N两点,若O为坐标原点,满足OP⊥ON,求直线的方程.