如图,在三棱锥中,,,,.(Ⅰ)求证:;(Ⅱ)求二面角的大小;(Ⅲ)求点到平面的距离.
(本题12分)已知函数对任意实数p、q都满足.(Ⅰ)当时,求的表达式;(Ⅱ)设求;(Ⅲ)设求证:.
(本题12分)某人抛掷一枚硬币,出现正反的概率都是,构造数列,使得,记.(Ⅰ)求的概率;(Ⅱ)若前两次均出现正面,求的概率.
(本题12分)已知数列{an}中,a1=0,a2 =4,且an+2-3an+1+2an= 2n+1(),数列{bn}满足bn=an+1-2an.(Ⅰ)求证:数列{-}是等比数列;(Ⅱ)求数列{}的通项公式;(Ⅲ)求.
(本题10分)已知函数是奇函数,当x>0时,有最小值2,且f (1).(Ⅰ)试求函数的解析式;(Ⅱ)函数图象上是否存在关于点(1,0)对称的两点?若存在,求出点的坐标;若不存在,说明理由.
(本题10分)解关于x的不等式: (a>0,a≠1).