已知函数(且).(Ⅰ)若,试求的解析式;(Ⅱ)令,若,又的图像在轴上截得的弦的长度为,且,试比较、的大小.
已知不等式2|x-3|+|x-4|<2a.(Ⅰ)若a=1,求不等式的解集;(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.
已知曲线C1的极坐标方程为ρcos(θ-)=-1,曲线C2的极坐标方程为ρ=2cos(θ-).以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.(Ⅰ)求曲线C2的直角坐标方程;(Ⅱ)求曲线C2上的动点M到曲线C1的距离的最大值.
如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形;(Ⅰ)求AM的长;(Ⅱ)求sin∠ANC.
设m为实数,函数f(x)=-+2x+m,x∈R(Ⅰ)求f(x)的单调区间与极值;(Ⅱ)求证:当m≤1且x>0时,>2+2mx+1.
已知圆C:的半径等于椭圆E:(a>b>0)的短半轴长,椭圆E的右焦点F在圆C内,且到直线l:y=x-的距离为-,点M是直线l与圆C的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).(Ⅰ)求椭圆E的方程;(Ⅱ)求证:|AF|-|BF|=|BM|-|AM|.