若是关于的一元二次方程的两个根,则方程的两个根和系数有如下关系:. 我们把它们称为根与系数关系定理. 如果设二次函数的图象与x轴的两个交点为.利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:请你参考以上定理和结论,解答下列问题:设二次函数的图象与x轴的两个交点为,抛物线的顶点为,显然为等腰三角形.(1)当为等腰直角三角形时,求(2)当为等边三角形时,求
(1)已知一元二次方程x2-4x+m=0有唯一实数根,求的值; (2)小明是这样完成“作∠MON的平分线”这项作业的: “如图,①以O为圆心,任意长为半径画弧,分别交OM,ON于点A,B;②分别作线段OA,OB的垂直平分线l1,l2(垂足分别记为C,D),记l1与l2的交点为P;③作射线OP,则射线OP为∠MON的平分线.” 你认为小明的作法正确吗?如果正确,请你给证明,如果不正确,请指出错在哪里.
阅读下列材料: 解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法: 解:∵x﹣y=2,又∵x>1,∴y+2>1y>﹣1 又y<0,∴﹣1<y<0.…① 同理得:1<x<2.…② 由①+②得﹣1+1<y+x<0+2,∴x+y的取值范围是0<x+y<2. 请按照上述方法,完成下列问题: 已知关于x、y的方程组的解都为正数. (1)求a的取值范围; (2)已知a﹣b=4,且a>1,求a+b的取值范围; (3)已知a﹣b=m(m是大于0的常数),且b≤1,求2a+b最大值.(用含m的代数式表示)
已知:在△ABC中,AB=AC,∠BAC=90°,点D是BC的中点,点P是BC边上的一个动点,连接AP.直线BE垂直于直线AP,交AP于点E,直线CF垂直于直线AP,交AP于点F. (1)当点P在BD上时(如图①),求证:CF=BE+EF; (2)当点P在DC上时(如图②),CF=BE+EF还成立吗?若不成立,请画出图形,并直接写出CF、BE、EF之间的关系(不需要证明). (3)若直线BE的延长线交直线AD于点M(如图③),找出图中与CP相等的线段,并加以证明.
某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况: 销售时段 销售数量 销售收入 A种型号 B种型号 销售收入 第一周 3台 5台 1800元 第二周 4台 10台 3100元 (进价、售价均保持不变,利润=销售收入﹣进货成本) (1)求A、B两种型号的电风扇的销售单价; (2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?
如图,在四边形中ABCD中,AB∥CD,∠1=∠2,DB=DC. (1)求证:△ABD≌△EDC; (2)若∠A=135°,∠BDC=30°,求∠BCE的度数.