山东省《体育高考方案》于2012年2月份公布,方案要求以学校为单位进行体育测试,某校对高三1班同学按照高考测试项目按百分制进行了预备测试,并对50分以上的成绩进行统计,其频率分布直方图如图所示,若90~100分数段的人数为2人.(Ⅰ)请估计一下这组数据的平均数M;(Ⅱ)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成一个小组.若选出的两人成绩差大于20,则称这两人为“帮扶组”,试求选出的两人为“帮扶组”的概率.
(本小题满分12分) 已知直线与椭圆相交于、两点. (1)若椭圆的离心率为,焦距为,求线段的长; (2)若向量与向量互相垂直(其中为坐标原点),当椭圆的离心率时,求椭圆长轴长的最大值.
(本小题满分12分)我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下: [40,50), 2; [50,60), 3; [60,70), 10; [70,80), 15; [80,90), 12; [90,100], 8. (1)完成样本的频率分布表;画出频率分布直方图. (2)估计成绩在85分以下的学生比例; (3)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)
(本小题满分12分)如图,在四棱锥中,底面是且边长为的菱形,侧面是等边三角形,且平面⊥底面,为的中点. (1)求证:; (2)求点到平面的距离.
(本小题满分12分)已知等差数列的前项和满足,. (1)求的通项公式; (2)求数列的前项和.
(本小题满分10分)选修4-5:不等式选讲. 已知函数. (1)当时,求不等式的解集; (2)若的解集包含,求的取值范围.