在Rt△ABC中,∠BAC=90°,∠B=30°,线段AD是BC边上的中线.如图(Ⅰ),将△ADC沿直线BC平移,使点D与点C重合,得到△FCE,连结AF.求证:四边形ADEF是等腰梯形;如图(Ⅱ),在(1)的条件下,再将△FCE绕点C顺时针旋转,设旋转角为(0°<<90°)连结AF、DE.AC⊥CF时,求旋转角的度数;②当=60°时,请判断四边形ADEF的形状,并给予证明.
分解因式(1)ax4-16a;(2)(x2 —5)2- 8(x2 —5)+16
解不等式组,并用数轴表示其解集。
如图,已知抛物线(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.(1)点B的坐标为 ,点C的坐标为 (用含b的代数式表示);(2)若b=8,请你在抛物线上找点P,使得△PAC是直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你探索,在(1)的结论下,在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)如果存在,求出点Q的坐标;如果不存在,请说明理由.
一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系;(1)根据图中信息,说明图中点(2,0)的实际意义;(2)求图中线段AB所在直线的函数解析式和甲乙两地之间的距离;(3)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;
如图,已知△ABC内接于⊙O,AC是⊙O的直径,D是的中点,过点D作直线BC的垂线,分别交CB、CA的延长线E、F(1)求证:EF是⊙O的切线;(2)若EF=12,EC=9,求⊙O的半径.