已知函数,求的极大值与极小值.
如图,四棱锥 P - A B C D 中, P D ⊥ 平面 A B C D , P D = D C = B C = 1 , A b = 2 , A B ∥ D C , ∠ B C D = 90 ° .
(1)求证: P C ⊥ B C
(2)求点 A 到平面 P B C 的距离.
在平面直角坐标系 x O y 中,点 A - 1 , - 2 , B 2 , 3 , C - 2 , - 1
(1)求以线段 A B 、 A C 为邻边的平行四边形两条对角线的长 (2)设实数 t 满足 A B ⇀ - t A C ⇀ · O C ⇀ = 0 ,求 t 的值
已知椭圆C的中心在原点,焦点在轴上,左右焦点分别为,且,点(1,)在椭圆C上.(1)求椭圆C的方程;(2)过的直线与椭圆相交于两点,且的面积为,求以为圆心且与直线相切的圆的方程
设函数.(1)对于任意实数,恒成立,求的最大值;(2)若方程有且仅有一个实根,求的取值范围。
如图,在直三棱柱ABC—A1B1C1中,,,直线B1C与平面ABC成30°角。
(1)求证:平面B1AC⊥平面ABB1A1;