三棱柱中,侧棱与底面垂直,,,分别是,的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面;(Ⅲ)求三棱锥的体积.
.(本小题满分13分)汽车和自行车分别从地和地同时开出,如下图,各沿箭头方向(两方向垂直)匀速前进,汽车和自行车的速度分别是10米/秒和5米/秒,已知米.(汽车开到地即停止)(Ⅰ)经过秒后,汽车到达处,自行车到达处,设间距离为,试写出关于的函数关系式,并求其定义域.(Ⅱ)经过多少时间后,汽车和自行车之间的距离最短?最短距离是多少?
.(本小题满分13分)已知是矩形,平面,,,为的中点.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成的角.
(本小题满分13分)已知点和直线,求:(Ⅰ)过点与直线平行的直线的方程;(Ⅱ)过点与直线垂直的直线的方程.
如图,椭圆的顶点为焦点为 S□ = 2S□.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线过(1,1),且与椭圆相交于两点,当是的中点时,求直线的方程.(Ⅲ)设为过原点的直线,是与n垂直相交于P点且与椭圆相交于两点的直线,,是否存在上述直线使以为直径的圆过原点?若存在,求出直线的方程;若不存在,请说明理由.
某厂家拟在2011年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元(m≥0)满足 (k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2011年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(Ⅰ)将2011年该产品的利润y万元表示为年促销费用m万元的函数;(Ⅱ)该厂家2011年的促销费用投入多少万元时,厂家的利润最大.