已知极点与坐标原点O重合,极轴与x轴非负半轴重合,M是曲线C: =4sin上任一点,点P满足.设点P的轨迹为曲线Q.(1)求曲线Q的方程;(2)设曲线Q与直线(t为参数)相交于A、B两点,且|AB|=4.求实数a.
已知函数在时取得最大值4. (1)求的最小正周期; (2)求的解析式; (3)若(α+)=,求sinα.
已知函数, ①求函数的单调区间。 ②若函数的图象在点(2,)处的切线的倾斜角为,对任意的,函数在区间上总不是单调函数,求m取值范围 ③求证:
已知抛物线C: 的焦点为F,点P(2,0),O为坐标原点,过P的直线与抛物线C相交于A,B两点,若向量在向量上的投影为n,且,求直线的方程。
在平面直角坐标系中,已知某点,直线.求证:点P到直线的距离
已知数列是公差为1的等差数列,是公比为2的等比数列,分别是数列和前n项和,且 ①分别求,的通项公式。 ②若,求n的范围 ③令,求数列的前n项和。