19. (本小题满分12分) 如图,直四棱柱ABCD—A1B1C1D1的高为3,底面是边长为4且∠DAB = 60°的菱形,ACBD = O,A1C1B1D1 = O1,E是O1A的中点. (1) 求二面角O1-BC-D的大小; (2) 求点E到平面O1BC的距离.
(本小题满分12分)中,角的对边分别为,已知点在直线上. (1)求角的大小; (2)若为锐角三角形且满足,求实数的最小值。
(本小题满分10分)已知函数,且当时,的最小值为2, (1)求的单调递增区间; (2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再把所得的图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.
(本小题满分12分).已知函数(). (1)若,求曲线在点处的切线方程; (2)若不等式对任意恒成立. (ⅰ)求实数的取值范围; (ⅱ)试比较与的大小,并给出证明(为自然对数的底数,).
(本小题满分12分)设△ABC三个内角A、B、C所对的边分别为a,b,c.已知C=,acosA=bcosB. (1)求角B的大小; (2)如图,在△ABC内取一点P,使得PB=2.过点P分别作直线BA、BC的垂线PM、PN,垂足分别是M、N.设∠PBA=,求PM+PN的最大值及此时的取值.
(本小题满分12分)设数列{an}的前n项和为Sn=n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1. (1)求数列{an},{bn}的通项公式. (2)设cn=an·bn,求数列{cn}的前n项和Tn.