计算:
如图,在平面直角坐标系中,已知抛物线y=-x2+bx+c经过点A(0,1)、B(3,)两点,BC⊥x轴,垂足为C.点P是线段AB上的一动点(不与A,B重合),过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t. (1)求此抛物线的函数表达式; (2)连结AM、BM,设△AMB的面积为S,求S关于t的函数关系式,并求出S的最大值; (3)连结PC,当t为何值时,四边形PMBC是菱形.
已知关于x的方程(k-2)x2+2(k-2)x+k+1=0有两个实数根,求正整数k的值.
已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C. (1)如图①,若AB=2,∠P=30°,求AP的长(结果保留根号); (2)如图②,若D为AP的中点,求证直线CD是⊙O的切线.
小明所在班组织全部同学参加上海世博园,由于时间原因,每个学生只能在所给的场馆单(如图)上随机选择,选择方式规定为在3个发展中国家馆和4个发达国家馆中分别选一个馆参观。场馆单上的3个发展中国家馆包括:A中国馆、B印度馆、C巴西馆;4个发达国家馆包括:D美国馆、E日本馆、F德国馆、G法国馆,其中中国馆、印度馆、日本馆属于亚洲馆。 (1)请你用列表或画树状图的方法,分析并写出小明所有可能的参观方式。(馆名用字母表示即可) (2)求小明所选择参观的两个馆恰好都是亚洲馆的概率。
如图,在中,,且点的坐标为(4,2). (1)画出绕点逆时针旋转后的; (2)求点旋转到点所经过的路线长.