张彬 和王华两位同学为得到一张观看足球比赛的入场券,各自设计了一种方案:张彬:如图,设计了一个可以自由转动的转盘,随意转动转盘,当指针指向阴影区域时,张彬得到了入场券;否则,王华得到入场券;王华:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中.从中随机取出一个小球,然后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为偶数,王华得到入场券;否则,张彬得到入场券.请你运用所学的概率知识,分析张彬和王华 的设计方案对双方是否公平.
如图1所示:等边△ABC中,线段AD为其内角角平分线,过D点的直线B1C1⊥AC于C1交AB的延长线于B1. (1)请你探究:,是否都成立? (2)请你继续探究:若△ABC为任意三角形,线段AD为其内角角平分线,请问一定成立吗?并证明你的判断. (3)如图2所示Rt△ABC中,∠ACB=90︒,AC=8,AB=,E为AB上一点且AE=5,CE交其内角角平分线AD于F.试求的值.
如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm.动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动,以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形和梯形重合部分的面积为Scm2. (1)当t= _________ s时,点P与点Q重合; (2)当t= _________ s时,点D在QF上; (3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数关系式.
如图1,在菱形ABCD中,AC=2,BD=2,AC,BD相交于点O. (1)求边AB的长; (2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G. ①判断△AEF是哪一种特殊三角形,并说明理由; ②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.
已知:如图,四边形ABCD是正方形,BD是对角线,BE平分∠DBC交DC于E点,交DF于M,F是BC延长线上一点,且CE=CF. (1)求证:BM⊥DF; (2)若正方形ABCD的边长为2,求ME•MB.
如图,正方形ABCD中,E、F分别是边AD、CD上的点,DE=CF,AF与BE相交于O,DG⊥AF,垂足为G. (1)求证:AF⊥BE; (2)试探究线段AO、BO、GO的长度之间的数量关系; (3)若GO:CF=4:5,试确定E点的位置.