提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆 /千米)的函数,当桥上的车流密度达到200辆 /千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆 /千米时,车流速度为60千米/小时,研究表明:当时,车流速度v是车流密度x的一次函数.(1)当时,求函数的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值. (精确到1辆/小时).
如图所示, 四棱锥P-ABCD的底面是边长为1的正方形,PA^CD,PA = 1,PD=,E为PD上一点,PE = 2ED. (1)求证:PA ^平面ABCD; (2)求二面角D-AC-E的余弦值; (3)在侧棱PC上是否存在一点F,使得BF // 平面AEC? 若存在,指出F点的位置,并证明;若不存在,说明理由.
(本小题满分12分)某高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座。(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:根据上表:(1)求数学辅导讲座在周一、周三、周五都不满座的概率;(2)设周三各辅导讲座满座的科目数为,求随机变量的分布列和数学期望.
已知向量,设函数+(1)若,f(x)=,求的值; (2)在△ABC中,角A,B,C的对边分别是,且满足,求f(B)的取值范围.
已知函数.(为常数)(1)当时,①求的单调增区间;②试比较与的大小;(2),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.
已知椭圆的右焦点为,离心率,是椭圆上的两动点,动点满足(其中实数为常数).(1)求椭圆标准方程;(2)当,且直线过点且垂直于轴时,求过三点的外接圆方程;(3)若直线与的斜率乘积,问是否存在常数,使得动点满足,其中,若存在求出的值,若不存在,请说明理由.