已知椭圆的右焦点为,离心率,是椭圆上的两动点,动点满足(其中实数为常数).(1)求椭圆标准方程;(2)当,且直线过点且垂直于轴时,求过三点的外接圆方程;(3)若直线与的斜率乘积,问是否存在常数,使得动点满足,其中,若存在求出的值,若不存在,请说明理由.
已知函数在与时都取得极值. (1)求的值与函数的单调区间; (2)若对,不等式恒成立,求的取值范围.
函数和的图像如图所示,设两函数的图像交于点. (1)请指出示意图中曲线分别对应哪一个函数? (2),且,指出的值,并说明理由; (3)结合函数图像示意图,请把 四个数按从小到大的顺序排列.
已知集合, (1)求; (2)若集合,满足,求实数的取值范围.
函数; (1)若在处取极值,求的值; (2)设直线和将平面分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四个区域(不包括边界),若图象恰好位于其中一个区域,试判断其所在区域并求出相应的的范围.
已知函数,; (1)讨论的单调性; (2)若在上的最大值为,求的值.