已知函数.(Ⅰ)若函数是R上的单调递增函数,求实数的的取值范围; (Ⅱ)若是的一个极值点,求在上的极大值与极小值
集合,,若命题,命题,且是必要不充分条件,求实数的取值范围。
已知圆A过点,且与圆B:关于直线对称.(1)求圆A的方程;(2)若HE、HF是圆A的两条切线,E、F是切点,求的最小值。(3)过平面上一点向圆A和圆B各引一条切线,切点分别为C、D,设,求证:平面上存在一定点M使得Q到M的距离为定值,并求出该定值.
(本小题满分14分)如图,在四面体A−BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中点. (1)证明:平面ABC平面ADC; (2)若ÐBDC=60°,求二面角C−BM−D的大小.
如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC的中点.(1)证明:PA//平面BGD;(2)求直线DG与平面PAC所成的角的正切值.
如图,直线过点P(2,1),夹在两已知直线和之间的线段AB恰被点P平分.(1)求直线的方程;(2)设点D(0,m),且AD//,求:ABD的面积.