已知圆A过点,且与圆B:关于直线对称.(1)求圆A的方程;(2)若HE、HF是圆A的两条切线,E、F是切点,求的最小值。(3)过平面上一点向圆A和圆B各引一条切线,切点分别为C、D,设,求证:平面上存在一定点M使得Q到M的距离为定值,并求出该定值.
如图,四棱锥的底面为矩形,,,分别是的中点,. (Ⅰ)求证:平面; (Ⅱ)求证:平面平面.
已知正方形的中点为直线和的交点,正方形一边所在直线的方程为,求其他三边所在直线的方程.
已知正方体. (Ⅰ)求证:平面平面; (Ⅱ)求直线与所成角的大小.
(本题14分)已知函数. (1)若,试用定义证明:在上单调递增; (2)若,当时不等式恒成立,求的取值范围.
(本题15分) 如图,已知抛物线,点是轴上的一点,经过点且斜率为的直线与抛物线相交于两点. (1)当点在轴上时,求证线段的中点轨迹方程; (2)若(为坐标原点),求的值.