某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x-6)2. 其中3<x<6,a为常数. 已知销售价格为5元/千克时,每日可售出该商品11千克.(Ⅰ)求a的值;(Ⅱ)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
设函数 f n x = x n + b x + c n ∈ N + , b , c ∈ R
(1)设 n ≥ 2 , b = 1 , c = - 1 ,证明: f n x 在区间 1 2 , 1 内存在唯一的零点; (2)设 n = 2 ,若对任意 x 1 , x 2 ∈ - 1 , 1 ,有 f 2 x 1 - f 2 x 2 ≤ 4 ,求 b 的取值范围;
(3)在(1)的条件下,设 x n 是 f n x 在 1 2 , 1 内的零点,判断数列 x 2 , x 3 , … , x n … 的增减性。
某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:
从第一个顾客开始办理业务时计时. (1)估计第三个顾客恰好等待4分钟开始办理业务的概率; (2) X 表示至第2分钟末已办理完业务的顾客人数,求 X 的分布列及数学期望.
已知椭圆 C 1 : x 2 4 + y 2 = 1 ,椭圆 C 2 以 C 1 的长轴为短轴,且与 C 1 有相同的离心率。 (1)求椭圆 C 2 的方程; (2)设 O 为坐标原点,点 A , B 分别在椭圆 C 1 和 C 2 上, O B ⇀ = 2 O A ⇀ ,求直线 A B 的方程.
(1)如图,证明命题"a是平面 π 内的一条直线,b是 π 外的一条直线(b不垂直于 π ),c是直线b在 π 上的投影,若 a ⊥ b ,则 a ⊥ c "为真。 (2)写出上述命题的逆命题,并判断其真假(不需要证明)
设 { a n } 的公比不为1的等比数列,其前 n 项和为 S n ,且 a 5 , a 3 , a 4 成等差数列。 (1)求数列 { a n } 的公比;(2)证明:对任意 k ∈ N + , S k + 2 , S k , S k + 1 成等差数列