已知椭圆 C 1 : x 2 4 + y 2 = 1 ,椭圆 C 2 以 C 1 的长轴为短轴,且与 C 1 有相同的离心率。 (1)求椭圆 C 2 的方程; (2)设 O 为坐标原点,点 A , B 分别在椭圆 C 1 和 C 2 上, O B ⇀ = 2 O A ⇀ ,求直线 A B 的方程.
已知,满足约束条件,求的最小值.
等差数列中, (1)求的通项公式; (2)设,求数列的前项和.
设是公比为正数的等比数列,, (1)求的通项公式; (2)设是首项为1,公差为2的等差数列,求数列的前项和.
(1)已知,求函数的最大值; (2)已知,且,求的最小值.
已知数列满足 (1)求证:数列为等比数列; (2)设,问:数列中是否存在三项,使成等差数列,如果存在,请求出这三项;如果不存在,请说明理由。