统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:(≤120).已知甲、乙两地相距100千米。(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
(本小题满分14分)已知数列的相邻两项是关于的方程的两实根,且(1)求证:数列是等比数列;(2)设是数列的前项和,求;(3)问是否存在常数,使得对都成立,若存在,求出的取值范围,若不存在,请说明理由。
(本小题满分14分)如图所示,椭圆的离心率为,且A(0,1)是椭圆C的顶点。(1)求椭圆C的方程;(2)过点A作斜率为1的直线,在直线上求一点M,使得以椭圆C的焦点为焦点,且过点M的双曲线E的实轴最长,并求此双曲线E的方程。
已知是的导函数,,且函数的图象过点(0,-2)。(1)求函数的表达式;(2)设,若在定义域内恒成立,求实数的取值范围。
(本小题满分14分)已知四棱锥P—ABCD的三视图如右图所示,其中正(主)视图与侧(左)视为直角三角形,俯视图为正方形。 (1)求四棱锥P—ABCD的体积; (2)若E是侧棱上的动点。问:不论点E在PA的任何位置上,是否都有?请证明你的结论?(3)求二面角D—PA—B的余弦值。
(本小题满分12分)第16届亚运会将于2010年11月12日至27日在中国广州进行,为了搞好接待工作,组委会招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余不喜爱。(1)根据以上数据完成以下2×2列联表:
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?(3)从女志原者中抽取2人参加接待工作,若其中喜爱运动的人数为,求的分布列和均值。参考公式:,其中参考数据: