设等差数列的前项和为且.(1)求数列的通项公式及前项和公式;(2)设数列的通项公式为,问: 是否存在正整数t,使得成等差数列?若存在,求出t和m的值;若不存在,请说明理由.
已知函数,其中. (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)当时,求函数的单调区间与极值.
已知函数,数列是公差为d的等差数列,是公比为q ()的等比数列.若 (Ⅰ)求数列,的通项公式; (Ⅱ)设数列对任意自然数n均有, 求的值。
已知集合,在平面直角坐标系中,点的坐标x∈A,y∈A。计算: (1)点正好在第二象限的概率; (2)点不在x轴上的概率; (3)点正好落在区域上的概率。
已知,(Ⅰ)求的值;(Ⅱ)求的值
如图,矩形花园ABCD,AB为4米,BC为6米,小鸟任意落下,则小鸟落在阴影区的概率是多少?