已知,函数.(1)求的单调区间和值域;(2)设,若,总,使得成立,求的取值范围;(3)对于任意的正整数,证明:.
设是满足不等式的自然数的个数,其中.(Ⅰ)求的值;(Ⅱ) 求的解析式;(Ⅲ)记,令,试比较与的大小.
已知圆C:,圆C关于直线对称,圆心在第二象限,半径为(Ⅰ)求圆C的方程; (Ⅱ)已知不过原点的直线与圆C相切,且在x轴、y轴上的截距相等,求直线的方程。
已知函数.(1)求函数在区间(为自然对数的底)上的最大值和最小值;(2)求证:在区间上,函数的图象在函数的图象的下方;(3)求证:≥ .
已知动圆Q经过点A,且与直线相切,动圆圆心Q的轨迹为曲线C,过定点作与y轴平行的直线且和曲线C相交于点M1,然后过点M1作C的切线和x轴交于点,再过作与y轴平行的直线且和C相交于点M2,又过点M2作C的切线和x轴交于点,如此继续下去直至无穷,记△的面积为(Ⅰ)求曲线C的方程;(Ⅱ)试求的值。
直线AB过抛物线x2=2py(p>0)的焦点F,并与其相交于A、B两点,Q是线段AB的中点,M是抛物线的准线与y轴的交点,O是坐标原点.(Ⅰ)求的取值范围;(Ⅱ)过A、B两点分别作此抛物线的切线,两切线相交于N点.求证:;(Ⅲ)若p是不为1的正整数,当,△ABN的面积的取值范围为[5,20]时,求该抛物线的方程.