如图所示的转盘,分成三个相同的扇形,指针位置固定转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).求事件“转动一次,得到的数恰好是0”发生的概率;写出此情景下一个不可能发生的事件.用树状图或列表法,求事件“转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率.
如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG. (1)求证:四边形DEFG是平行四边形; (2)如果∠OBC=45°,∠OCB=30°,OC=4,求EF的长.
列方程或方程组解应用题:八年级的学生去距学校10千米的科技馆参观,一部分学生骑自行车先走,过了20分钟,其余的学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑自行车学生速度的2倍,求骑车学生每小时走多少千米?
如图,一次函数的图象与反比例函数(为常数,且)的图象都经过点A(m,2). (1)求点A的坐标及反比例函数的表达式; (2)设一次函数的图象与x轴交于点B,若点P是x轴上一点,且满足△ABP的面积是2,直接写出点P的坐标.
已知,求代数式的值.
解不等式组:.