以平面直角坐标系的坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线E的极坐标方程为,曲线F的参数方程为(t为参数)(1) 求曲线E的直角坐标方程及曲线F的普通方程;(2)判断两直线的位置关系,若相交,求弦长,若不相交,说明理由。
(本小题12分) 在中,的对边分别为,已知。 (1)求的值: (2)求
(本小题12分)已知等差数列{}中, 求{}前n项和。
(本小题满分12分)在中,角、、所对应的边分别为、、,且满足, (I)求角C的值; (II)若,求面积的最大值.
(本小题满分12分)已知函数(). (Ⅰ)求的最小正周期,并求的最小值. (Ⅱ)令,若对于恒成立,求实数的取值范围.
已知动圆过点,且与圆相内切. (1)求动圆的圆心的轨迹方程; (2)设直线(其中与(1)中所求轨迹交于不同两点,D,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.