如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点.抛物线与轴交于点,与直线交于点,且分别与圆相切于点和点.求抛物线的解析式;抛物线的对称轴交轴于点,连结,并延长交圆于,求的长.过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由.
解下列分式方程(1);(2)
计算: (1) (2) (3)
已知抛物线 (1)填空:抛物线的顶点坐标是( , ),对称轴是 ; (2)已知y轴上一点A(0,-2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标; (3)在(2)的条件下,点M在直线AP上.在平面内是否存在点 N,使以点O、点A、点M、点N为顶点的四边形为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由.
某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到实惠,每千克应涨价为多少元?
如图,在⊙O中,弧AB=60°,AB=6,(1)求圆的半径;(2)求弧AB的长;(3)求阴影部分的面积.