如图,在△ABO中,已知点、B(﹣1,﹣1)、C(0,0),正比例函数y=﹣x图象是直线l,直线AC∥x轴交直线l与点C.(1)C点的坐标为 (﹣3,3) ;(2)以点O为旋转中心,将△ABO顺时针旋转角α(90°<α<180°),使得点B落在直线l上的对应点为B′,点A的对应点为A′,得到△A′OB′.①∠α= 90° ;②画出△A′OB′.(3)写出所有满足△DOC∽△AOB的点D的坐标.
如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上从点A运动到点B,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F. (1)求证:CE=CF; (2)求线段EF的最小值; (3)当点D从点A运动到点B时,线段EF扫过的面积的大小是 .
已知:如图,二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0). (1)写出该函数图象的对称轴; (2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?请说明理由.
已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1. (1)求出△ABE和△BCF重叠部分(即△BEG)的面积; (2)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.
已知:如图,二次函数的顶点坐标为(0,2),矩形ABCD的顶点B、C在x轴上,矩形ABCD在抛物线与x轴所围成的图形内. (1)求二次函数的表达式; (2)设点A的坐标为(x,y)(x>0,y>0),试求矩形ABCD的周长P关于自变量x的函数表达式,并求出自变量x的取值范围.
已知:如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形的周长为32,求BC和DC的长.