在直角坐标系中,A (3,0),B(0,3),C (1)若^,求的值; (2)与能否共线?说明理由。
(本小题满分12分)在一次数学考试中,第21题和第22题为选做题. 规定每位考生必须且只须在其中选做一题. 设4名考生选做每一道题的概率均为.(1)求其中甲、乙两名学生选做同一道题的概率;(2)设这4名考生中选做第22题的学生个数为,求的概率分布及数学期望. 的解析
.已知关于x的一元二次方程x-2(a-2)x-b+16=0.(1)若a、b是一枚骰子先后投掷两次所得到的点数,求方程有两个正实数根的概率;(2)若a∈[2,6],b∈[0,4],求一元二次方程没有实数根的概率
已知盒中装有仅颜色不同的玻璃球6个,其中红球2个、黑球3个、白球1个. (1)从中任取1个球, 求取得红球或黑球的概率;(2)从中一次取2个不同的球,试列出所有基本事件;并求至少有一个是红球概率。(3)从中取2次,每次取1个球,在放回的条件下求至少有一个是红球概率。
有一个容量为100的样本,数据的分组及各组的频数如下:(1)列出样本的频率分布表;(2)画出频率分布直方图和频率折线图;(3)由直方图确定样本的中位数。
对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表.
(1)画出茎叶图,由茎叶图你能获得哪些信息?(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、方差,并判断选谁参加比赛更合适.