(本小题满分12分)已知函数,其中.(Ⅰ)求最小正周期及对称轴方程;(Ⅱ)在锐角中,内角的对边分别为,已知,,求边上的高的最大值.
右图为一简单组合体,其底面ABCD为正方形,平面,,且,(1)求证:BE//平面PDA;(2)若N为线段的中点,求证:平面;(3)若,求平面PBE与平面ABCD所成的二面角的大小.
已知复数,,且.(1)若且,求的值;(2)设=,已知当时,,试求的值.
已知的图象经过点,且在处的切线方程是(1) 求的解析式;(2) 点是直线上的动点,自点作函数的图象的两条切线、(点、为切点),求证直线经过一个定点,并求出定点的坐标。
已知函数。 (1)求的单调区间;(2)如果在区间上的最小值为,求实数以及在该区间上的最大值.
已知两定点,动点满足。(1) 求动点的轨迹方程;(2) 设点的轨迹为曲线,试求出双曲线的渐近线与曲线的交点坐标。