(本小题满分12分)已知函数,其中.(Ⅰ)求最小正周期及对称轴方程;(Ⅱ)在锐角中,内角的对边分别为,已知,,求边上的高的最大值.
为了迎接2010年在广州举办的亚运会,我市某体校计划举办一次宣传活动,届时将在运动场的一块空地ABCD(如图)上摆放花坛,已知运动场的园林处(P点)有一批鲜花,今要把这批鲜花沿道路PA或PB送到空地ABCD中去,且PA="200" m,PB="300" m,∠APB=60°. (1)试求A、B两点间的距离; (2)能否在空地ABCD中确定一条界线,使位于界线一侧的点,沿道路PA送花较近;而另一侧的点,沿道路PB送花较近?如果能,请说出这条界线是一条什么曲线,并求出其方程.
将个数排成行列的一个数阵: 已知,该数列第一列的个数从上到下构成以为公差的等差数列,每一行的个数从左到右构成以为公比的等比数列,其中为正实数。 (1)求m; (2)求第行第1列的数及第行第列的数 (3)求这个数的和。
已知直线l经过抛物线的焦点F,且与抛物线相交于A、B两点. (1)若,求点A的坐标; (2)若直线l的倾斜角为,求线段AB的长.
已知函数. (1)求这个函数的图象在点处的切线方程; (2)讨论这个函数的单调区间.
在中,分别为内角的对边, 且 (1)求的大小; (2)若,试判断的形状