最近,某人准备将手中的10万块钱投资理财,现有二种方案:第一种方案:将10万块钱全部用来买股票,据分析预测:投资股市一年可能获利40%,也可能亏损20%(只有这两种可能),且获利的概率为.第二种方案:将10万块钱全部用来买基金,据分析预测:投资基金一年可能获利20%,也可能损失10%,也可能不赔不赚,且三种情况发生的概率分别为.针对以上两种投资方案,请你为选择一种合理的理财方法,并说明理由.
(本小题满分12分)a2,a5是方程x 2-12x+27=0的两根,数列{}是公差为正数的等差数列,数列{}的前n项和为,且=1- (1)求数列{},{}的通项公式; (2)记=,求数列{}的前n项和Sn.
(本小题满分12分)盒中有大小相同的编号为1,2,3,4,5,6的六只小球,规定:从盒中一次摸出'2只球,如果这2只球的编号均能被3整除,则获一等奖,奖金10元,如果这2只球的编号均为偶数,则获二等奖,奖金2元,其他情况均不获奖. (1)若某人参加摸球游戏一次获奖金x元,求x的分布列及期望; (2)若某人摸一次且获奖,求他获得一等奖的概率.
(本小题满分12分)在△ABC中,已知A=45°,cosB =. (I)求cosC的值; (11)若BC=" 10" , D为AB的中点,求CD的长.
(本小题满分14分)如图,已知直线OP1,OP2为双曲线E:的渐近线,△P1OP2的面积为,在双曲线E上存在点P为线段P1P2的一个三等分点,且双曲线E的离心率为. (1)若P1、P2点的横坐标分别为x1、x2,则x1、x2之间满足怎样的关系?并证明你的结论; (2)求双曲线E的方程; (3)设双曲线E上的动点,两焦点,若为钝角,求点横坐标的取值范围.
(本小题满分14分)已知函数(其中e是自然对数的底数,k为正数) (1)若在处取得极值,且是的一个零点,求k的值; (2)若,求在区间上的最大值.