已知双曲线和椭圆有相同的焦点和,两曲线在第一象限内的交点为,椭圆与轴负半轴交于点,且三点共线,分有向线段的比为,又直线与双曲线的另一交点为,若.(1)求椭圆的离心率;(2)求双曲线和椭圆的方程.
已知三棱柱ABC—A1B1C1中底面边长和侧棱长均为a,侧面A1ACC1⊥底面ABC,A1B=. (1)求异面直线AC与BC1所成角的余弦值;(2)求证:A1B⊥面AB1C.
某几何体的三视图如图所示,P是正方形ABCD对角线的交点,G是PB的中点. (1)根据三视图,画出该几何体的直观图;(2)在直观图中,①证明PD∥面AGC;②证明面PBD⊥面AGC.
底面是平行四边形的四棱锥P-ABCD,点E在PD上,且PE∶ED=2∶1. 问:在棱PC上是否存在一点F,使BF∥面AEC?证明你的结论.
如图(1),△BCD内接于直角梯形A1A2A3D,已知沿△BCD三边将△A1BD、△A2BC、△A3CD翻折上去,恰好形成一个三棱锥ABCD,如图(2)所示. (1)求证:在三棱锥ABCD中,AB⊥CD;(2)若直角梯形的上底A1D=10,高A1A2=8,求翻折后三棱锥的侧面ACD与底面BCD所成二面角θ的余弦值.
如图所示,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.求证:PA∥平面EDB.