已知双曲线和椭圆有相同的焦点和,两曲线在第一象限内的交点为,椭圆与轴负半轴交于点,且三点共线,分有向线段的比为,又直线与双曲线的另一交点为,若.(1)求椭圆的离心率;(2)求双曲线和椭圆的方程.
已知函数(b为常数). (1)函数f(x)的图像在点(1,f(1))处的切线与g(x)的图像相切,求实数b的值; (2)设h(x)=f(x)+g(x),若函数h(x)在定义域上存在单调减区间,求实数b 的取值范围; (3)若b>1,对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|> |g(x1)-g(x2)|成立,求b的取值范围.
已知函数定义在上,对于任意的,有,且当时,. (1)验证函数是否满足这些条件; (2)若,且,求的值. (3)若,试解关于的方程.
已知函数f(x)=3-2log2x,g(x)=log2x. (1)如果x∈[1,4],求函数h(x)=(f(x)+1)g(x)的值域; (2)求函数M(x)=的最大值; (3)如果不等式f(x2)f()>kg(x)对x∈[2,4]有解,求实数k的取值范围.
将52名志愿者分成A,B两组参加义务植树活动,A组种植150捆白杨树苗,B组种植200捆沙棘树苗.假定A,B两组同时开始种植. (1)根据历年统计,每名志愿者种植一捆白杨树苗用时小时,种植一捆沙棘树苗用时小时.应如何分配A,B两组的人数,使植树活动持续时间最短? (2)在按(1)分配的人数种植1小时后发现,每名志愿者种植一捆白杨树苗用时仍为小时,而每名志愿者种植一捆沙棘树苗实际用时小时,于是从A组抽调6名志愿者加入B组继续种植,求植树活动所持续的时间.
已知命题p:, 命题q:. 若“p且q”为真命题,求实数m的取值范围.