已知双曲线和椭圆有相同的焦点和,两曲线在第一象限内的交点为,椭圆与轴负半轴交于点,且三点共线,分有向线段的比为,又直线与双曲线的另一交点为,若.(1)求椭圆的离心率;(2)求双曲线和椭圆的方程.
在等比数列{}中,,公比,且, 与的等比中项为2. (1)求数列{}的通项公式; (2)设,求:数列{}的前项和为,
设函数,. (1)当时,函数取得极值,求的值; (2)当时,求函数在区间[1,2]上的最大值; (3)当时,关于的方程有唯一实数解,求实数的值.
已知圆,若焦点在轴上的椭圆过点,且其长轴长等于圆的直径. (1)求椭圆的方程; (2)过点作两条互相垂直的直线与,与圆交于、两点,交椭圆于另一点,设直线的斜率为,求弦长; (3)求面积的最大值.
某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为元,则销售量(单位:件)与零售价(单位:元)有如下关系:,问该商品零售价定为多少元时毛利润最大,并求出最大毛利润.(毛利润销售收入进货支出)
已知函数. (1)求的单调递减区间; (2)若在区间上的最大值为,求它在该区间上的最小值.