长沙市“两会”召开前,某政协委员针对自己提出的“环保提案”对某处的环境状况进行了实地调研.据测定,该处的污染指数与附近污染源的强度成正比,与到污染源的距离成反比,比例常数为k(k>0).现已知相距36 km的A,B两家化工厂(污染源)的污染强度分别为正数a,b,它们连线上任意一点C处的污染指数y等于两化工厂对该处的污染指数之和.设AC=x(km). (Ⅰ) 试将y表示为x的函数; (Ⅱ) 若a=1时,y在x=6处取得最小值,试求b的值.
已知数列的前项之和为,且.(1)求的通项公式;(2)数列满足,求数列的前项和;(3)若一切正整数恒成立,求实数的取值范围.
已知,(且).(1)过作曲线的切线,求切线方程;(2)设在定义域上为减函数,且其导函数存在零点,求实数的值.
椭圆的两焦点坐标分别为,且椭圆过点.(1)求椭圆方程;(2)过点作不与轴垂直的直线交该椭圆于两点,为椭圆的左顶点,试判断的大小是否为定值,并说明理由.
如图,在四棱锥中,平面平面,,是等边三角形,已知,.(1)求证:平面;(2)求三棱锥的体积.
在中,内角所对边长分别为,,,.(1)求的最大值及的取值范围;(2)求函数的最小值.