如图,矩形中,,.,分别在线段和上,∥,将矩形沿折起.记折起后的矩形为,且平面平面.(Ⅰ)求证:∥平面;(Ⅱ)若,求证:;(Ⅲ)求四面体体积的最大值.
(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为:.(Ⅰ)求直线的极坐标方程;(Ⅱ)求直线与曲线交点的极坐标.
如图,在中,,以为直径的圆交于点,点是边的中点,连接交圆于点.(Ⅰ)求证:是圆的切线;(Ⅱ)求证:.
(本小题满分12分)设函数(其中为自然对数的底数,,),曲线在点处的切线方程为.(1)求的值;(2)若对任意,函数有且只有两个零点,求的取值范围.
(本小题满分12分)已知椭圆的左、右焦点分别是,其离心率,点为椭圆上的一个动点,面积的最大值为.(Ⅰ)求椭圆的方程;(Ⅱ)若是椭圆上不重合的四个点,相交于点,,求的取值范围.
(本小题满分12分)已知数列{}的前n项和为,且满足.(Ⅰ)证明:数列为等比数列,并求数列{}的通项公式;(Ⅱ)数列{}满足,其前n项和为,试求满足的最小正整数n.