如图,AC=AD,∠BAC=∠BAD,点E在AB上..你能找出 对全等的三角形请写出一对全等三角形,并说明理由
从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,在 ΔABC 中, CD 为角平分线, ∠ A = 40 ° , ∠ B = 60 ° ,求证: CD 为 ΔABC 的完美分割线.
(2)在 ΔABC 中, ∠ A = 48 ° , CD 是 ΔABC 的完美分割线,且 ΔACD 为等腰三角形,求 ∠ ACB 的度数.
(3)如图2, ΔABC 中, AC = 2 , BC = 2 , CD 是 ΔABC 的完美分割线,且 ΔACD 是以 CD 为底边的等腰三角形,求完美分割线 CD 的长.
某商场销售 A , B 两种品牌的教学设备,这两种教学设备的进价和售价如表所示
A
B
进价(万元 / 套)
1.5
1.2
售价(万元 / 套)
1.65
1.4
该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.
(1)该商场计划购进 A , B 两种品牌的教学设备各多少套?
(2)通过市场调研,该商场决定在原计划的基础上,减少 A 种设备的购进数量,增加 B 种设备的购进数量,已知 B 种设备增加的数量是 A 种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问 A 种设备购进数量至多减少多少套?
如图,已知 ⊙ O 的直径 AB = 10 ,弦 AC = 6 , ∠ BAC 的平分线交 ⊙ O 于点 D ,过点 D 作 DE ⊥ AC 交 AC 的延长线于点 E .
(1)求证: DE 是 ⊙ O 的切线.
(2)求 DE 的长.
如图,已知抛物线 y = − x 2 + mx + 3 与 x 轴交于 A , B 两点,与 y 轴交于点 C ,点 B 的坐标为 ( 3 , 0 )
(1)求 m 的值及抛物线的顶点坐标.
(2)点 P 是抛物线对称轴 l 上的一个动点,当 PA + PC 的值最小时,求点 P 的坐标.
为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出) :
根据统计图中的信息,解答下列问题:
(1)求本次被调查的学生人数.
(2)将条形统计图补充完整.
(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.