2010年11月广州成功举办了第十六届亚运会。在华南理工大学学生会举行的亚运知识有奖问答比赛中,甲、乙、丙同时回答一道有关亚运知识的问题,已知甲回答对这道题目的概率是,甲、丙两人都回答错的概率是,乙、丙两人都回答对的概率是.(1)求乙、丙两人各自回答对这道题目的概率.(2)(理)求回答对这道题目的人数的随机变量的分布列和期望.
如图,已知球的半径为,球内接圆锥的高为,体积为, (1)写出以表示的函数关系式;(2)当为何值时,有最大值,并求出该最大值.
设,(1)解方程;(2)解不等式.
在区间内任取两个数(可以相等),分别记为和,(1)若、为正整数,求这两数中至少有一个偶数的概率;(2)若、,求、满足的概率.
(本小题满分14分)设函数是定义在上的减函数,并且满足,,(1)求的值, (2)如果,求x的取值范围。
(本小题满分14分)已知点P(2,0),及圆C:x2+y2-6x+4y+4=0.(1)当直线l过点P且与圆心C的距离为1时,求直线l的方程;(2)设过点P的直线与圆C交于A、B两点,当|AB|=4,求以线段AB为直径的圆的方程.