某种家用电器每台的销售利润与该电器的无故障使用时间有关,每台这种家用电器若无故障使用时间不超过一年,则销售利润为0元,若无故障使用时间超过一年不超过三年,则销售利润为100元;若无故障使用时间超过三年,则销售利润为200元。已知每台该种电器的无故障使用时间不超过一年的概率为无故障使用时间超过一年不超过三年的概率为(I)求销售两台这种家用电器的销售利润总和为400元的概率;(II)求销售三台这种家用电器的销售利润总和为300元的概率;
(本小题满分14分)已知函数,(1) 若函数在上是减函数,求实数的取值范围;(2) 令,是否存在实数,当(是自然常数)时,函数的最小值是,若存在,求出的值;若不存在,说明理由;(3)求证:当时,
(本小题满分14分)设函数在两个极值点,且(1)求满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点的区域;(2)证明:
(本小题满分14分)已知函数在处有极值.(1)求常数、;(2)求曲线与轴所包围的面积。
(本小题满分14分)某公司决定采用增加广告投入和技术改造投入两项措施来获得更大的收益.通过对市场的预测,当对两项投入都不大于3(百万元)时,每投入(百万元)广告费,增加的销售额可近似的用函数(百万元)来计算;每投入x(百万元)技术改造费用,增加的销售额可近似的用函数(百万元)来计算.现该公司准备共投入3(百万元),分别用于广告投入和技术改造投入,请设计一种资金分配方案,使得该公司的销售额最大. (参考数据:≈1.41,≈1.73)
(本小题满分12分)已知函数,其中,讨论函数的单调性.