某种家用电器每台的销售利润与该电器的无故障使用时间有关,每台这种家用电器若无故障使用时间不超过一年,则销售利润为0元,若无故障使用时间超过一年不超过三年,则销售利润为100元;若无故障使用时间超过三年,则销售利润为200元。已知每台该种电器的无故障使用时间不超过一年的概率为无故障使用时间超过一年不超过三年的概率为(I)求销售两台这种家用电器的销售利润总和为400元的概率;(II)求销售三台这种家用电器的销售利润总和为300元的概率;
对于数列,定义“变换”:将数列变换成数列,其中,且.这种“变换”记作.继续对数列进行“变换”,得到数列,依此类推,当得到的数列各项均为时变换结束.(Ⅰ)试问经过不断的“变换”能否结束?若能,请依次写出经过“变换”得到的各数列;若不能,说明理由;(Ⅱ)设,.若,且的各项之和为.(ⅰ)求,;(ⅱ)若数列再经过次“变换”得到的数列各项之和最小,求的最小值,并说明理由.
如图,抛物线与轴交于两点,点在抛物线上(点在第一象限),∥.记,梯形面积为. (Ⅰ)求面积以为自变量的函数式;(Ⅱ)若,其中为常数,且,求的最大值.
已知椭圆的离心率为,一个焦点为.(Ⅰ)求椭圆的方程;(Ⅱ)设直线交椭圆于,两点,若点,都在以点为圆心的圆上,求的值.
如图,矩形中,,.,分别在线段和上,∥,将矩形沿折起.记折起后的矩形为,且平面平面.(Ⅰ)求证:∥平面;(Ⅱ)若,求证:;(Ⅲ)求四面体体积的最大值.
某校高一年级开设研究性学习课程,()班和()班报名参加的人数分别是和.现用分层抽样的方法,从中抽取若干名学生组成研究性学习小组,已知从()班抽取了名同学.(Ⅰ)求研究性学习小组的人数;(Ⅱ)规划在研究性学习的中、后期各安排次交流活动,每次随机抽取小组中名同学发言.求次发言的学生恰好来自不同班级的概率.