有一种大型商品,A、B两地都有出售,且价格相同,某地居民从两地之一购得商品后运回的费用是:A地每公里的运费是B地每公里运费的3倍. A、B两地距离为10公里,顾客选择A地或B地购买这件商品的标准是:包括运费和价格的总费用较低.已知P地居民选择A地或B地购物总费用相等.(1)以A、B所在的直线为x轴,线段AB的中点为原点建立如图直角坐标系,试确定点P所在曲线的形状;(2)请说明(1)中曲线外的居民选择A地购物是否合算?
已知函数(),(Ⅰ)求函数的最小值;(Ⅱ)已知,:关于的不等式对任意恒成立;:函数是增函数.若“或”为真,“且”为假,求实数的取值范围.
已知函数(其中)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个点为.(1)求的解析式;(2)若求函数的值域;(3)将函数的图象向左平移个单位,再将图象上各点的横坐标变为原来的2倍,纵坐标不变,求经以上变换后得到的函数解析式.
(本小题满分13分)是等差数列,是各项都为正数的等比数列,且,. (Ⅰ)求、的通项公式; (Ⅱ)求数列的前n项和。
(本小题满分12分)如图,在底面为直角梯形的四棱锥P—ABCD中,,平面(1)求证:平面PAC;(2) 求二面角的大小.
某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现在采用分层抽样法(层内采用不放回的简单随机抽样)从甲,乙两组中共抽取3人进行技术考核.(1)求甲,乙两组各抽取的人数;(2)求从甲组抽取的工人中恰有1名女工的概率;(3)令X表示抽取的3名工人中男工人的人数,求X的分布列及数学期望.