设函数.(1)在区间上画出函数的图像;(2)当时,求证:在区间上,的图像位于函数图像的上方.
已知a、b、m、n均为正数,且a+b=1,mn=2,求(am+bn)(bm+an)的最小值.
设x、y∈R,求的最小值.
求函数y=+的最大值.
用数学归纳法证明:当n是不小于5的自然数时,总有2n>n2成立.
若实数x、y、z满足x+2y+3z=a(a为常数),求x2+y2+z2的最小值.