已知函数,,图象与轴异于原点的交点M处的切线为,与轴的交点N处的切线为, 并且与平行.(1)求的值; (2)已知实数t∈R,求函数的最小值;(3)令,给定,对于两个大于1的正数,存在实数满足:,,并且使得不等式恒成立,求实数的取值范围.
已知函数(1)求的单调减区间;(2)若方程有三个不同的实根,求的取值范围;(3)若在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
如图, 在直三棱柱中,,,点是的中点,(1)求证:;(2)求证:;(3)求直线与平面所成角的正切值.
已知关于的方程C:.(1)若方程表示圆,求的取值范围;(2)若圆与直线:相交于两点,且=,求的值.
设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.(1)求椭圆的离心率;(2)若过三点的圆恰好与直线相切,求椭圆的方程;(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得,如果存在,求出的取值范围,如果不存在,说明理由。
如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点. (1)求异面直线PA与DE所成角的大小;(2)求二面角B—DE—C的平面角的余弦值;(3)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.