已知函数(1)求的单调减区间;(2)若方程有三个不同的实根,求的取值范围;(3)若在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
(本小题满分10分,不等式选讲)已知实数满足,求的最小值.
(本小题满分10分,坐标系与参数方程选讲)在平面直角坐标系xOy中,已知直线的参数方程为: (t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2cosθ.直线与圆相交于A,B两点,求线段AB的长.
(本小题满分10分,矩阵与变换)设矩阵,,若,求矩阵M的特征值.
(本小题满分10分,几何证明选讲)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E.证明:AD·DE=2PB2.
(本小题满分16分)已知函数,.(1)记,求在的最大值;(2)记,令,,当时,若函数的3个极值点为,(ⅰ)求证:;(ⅱ)讨论函数的单调区间(用表示单调区间).