(本小题满分12分)圆的圆心在直线上,经过点,且与直线相切,(I)试求圆的方程; (Ⅱ)从点发出的光线经直线反射后可以照在圆上,试求发出光线所在直线的斜率取值范围。
已知椭圆()的离心率为,且满足右焦点到直线的距离为, (Ⅰ)求椭圆的方程; (Ⅱ)已知,过原点且斜率为的直线与椭圆交于两点,求面积的最大值。
已知抛物线的准线方程为。 (Ⅰ)求抛物线的标准方程; (Ⅱ)若过点的直线与抛物线相交于两点,且以为直径的圆过原点,求证为常数,并求出此常数。
已知函数在与时都取得极值 (1)求的值与函数的单调区间 (2)若,且对,不等式恒成立,求m的取值范围.
已知双曲线:的焦距为,且经过点。 (Ⅰ)求双曲线的方程和其渐近线方程; (Ⅱ)若直线与双曲线有且只有一个公共点,求所有满足条件的的取值。
命题:;命题:解集非空. 若,求的取值范围.