如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点. (1)求异面直线PA与DE所成角的大小;(2)求二面角B—DE—C的平面角的余弦值;(3)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.
已知,并且,,求的值.
已知,分别是方程的两实根,求的值.
已知函数, (1)求的定义域; (2)若角a在第一象限且求.
如图,已知圆O:x2+y2=2交x轴于A,B两点,点P(-1,1)为圆O上一点.曲线C是以AB为长轴,离心率为的椭圆,点F为其右焦点. 过原点O作直线PF的垂线交椭圆C的右准线l于点Q. (1)求椭圆C的标准方程;(2)证明:直线PQ与圆O相切.
已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足,其前n项和为Sn.(1)求数列{an}的通项公式an;(2)若S2为S1,Sm(m∈N*)的等比中项,求m的值.