(本小题满分13分)如图,在直三棱柱中,,分别为的中点,四边形是边长为的正方形.(Ⅰ)求证:平面;(Ⅱ)求证:平面;(Ⅲ)求二面角的余弦值.
如图,在四棱锥中,底面,,,是的中点. (Ⅰ)求和平面所成的角的大小; (Ⅱ)证明平面;
已知直线l1:mx+8y+n=0与l2:2x+my-1=0互相平行,求过点(m,n)与垂直并且被截得的线段长为的直线方程。
正三棱锥的高为1,底面边长为,此三棱锥内有一个球和四个面都相切. (1)求棱锥的全面积; (2)求球的直径.
如图,平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且G是EF的中点, (1)求证平面AGC⊥平面BGC; (2)求GB与平面AGC所成角的正弦值.
已知函数是偶函数,且时,.求 (1) 的值, (2) 时的值; (3)当>0时,的解析式.